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Objective and Background

- Deep learning (DL) are data hungry

- Popular DL tools designed on well-curated data

But, medical data face
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Transfer Learning

Truncated Transfer Learning (IT'TL)

Compact models
- Up to 75% compression

truncate

Fast inference speed O -
- Up to 25% speedup

Great compatibility
- Working with major
DL models
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MLP Method AUROCT AUPRCT  Params(M)| MACs(G)] CPU(ms)] GPU(ms)]
FTL 0.849 + 0.001 0.857 + 0.003 235 4.12 79.6 3.59
(1)1-7 TF-1 |0.856 +0.011 0.863 + 0.012 12.9 3.56 67.0 3.55
- , L LWFT-1 |0.848 + 0.002 0.861 + 0.004 235 4.12 76.9 3.59
Frozen blocks Transferred blocks  Multi-layer Perceptron
TTL-1 |0.851 +0.002 0.860 + 0.002 8.55 3.81 59.7 3.19
TE2 0.856 + 0.011 0.863 +0.012 12.9 3.56 T 3.56
LWFT-2 |0.853 + 0.005 0.861 + 0.001 235 4.12 79.7 3.56
TTL-2 (ours) | 0.861 + 0.013 0.871 + 0.008 6.31 2.87 53.1 2.97

TTL vs others

Improved performance with lower costs!

Federated Learning

- Mitigate the data poverty & inequality
- Respect data privacy

Our work covers:

Computer Vision
- COVID-19 detection

- Rib fracture detection
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Natural Language Processing

- Medical information extraction

(e.g., NER and RE))

features ?
- Low-level: general, task-invariant \f e
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Imbalance Learning
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Direct metric optimization

Precision

FPOR:
FROP:
OFBS:

OAP:
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B recall( fg, 1)

max precision( fg, t)
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max AP(fq).

Imbalance learning via regrouping

(-means l

Regrouping

s.t. precision(fg,t) > a,

s.t. recall(fg,t) > a,
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Balanced Classification

Example: reformulation for FPOR
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Relaxation to indicator functions is problematic
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