

Objective and Background

- Deep learning (DL) are data hungry
- Popular DL tools designed on well-curated data

But, medical data face

Transfer Learning

Truncated Transfer Learning (TTL)

- □ Compact models
- Up to 75% compression
- □ Fast inference speed ○
- Up to 25% speedup
- □ Great compatibility
- Working with major DL models

Visit our project

- Low-level: general, task-invariant - High-level: specific, task-dependent

Al for Health: Learning from Imperfect Data

Le Peng¹, Yash Travadi², Ju Sun¹ ¹Department of Computer Science and Engineering, University of Minnesota ²School of Statistics, University of Minnesota

Method	AUROC↑	AUPRC↑	$Params(M) \downarrow$	$MACs(G) \downarrow$	CPU(ms)↓	GPU(ms)↓
FTL	0.849 ± 0.001	0.857 ± 0.003	23.5	4.12	79.6	3.59
(l)1-7 TF-1	0.856 ± 0.011	0.863 ± 0.012	12.9	3.56	67.0	3.55
LWFT-1	0.848 ± 0.002	0.861 ± 0.004	23.5	4.12	76.9	3.59
TTL-1	0.851 ± 0.002	0.860 ± 0.002	8.55	3.31	59.7	3.19
TF-2	0.856 ± 0.011	0.863 ± 0.012	12.9	3.56	72.7	3.56
LWFT-2	0.853 ± 0.005	0.861 ± 0.001	23.5	4.12	79.7	3.56
TTL-2 (ours)	0.861 ± 0.013	$\boldsymbol{0.871 \pm 0.008}$	6.31	2.87	53.1	2.97

TTL vs others

Improved performance with lower costs!

paper on federated learning

Our federation highlighted in NVIDIA white

Direct metric optimization

FPOR:	$\max_{\boldsymbol{\theta},t} \operatorname{recall}(f_{\boldsymbol{\theta}},t) \text{s.t. }]$	orec
FROP:	$\max_{\boldsymbol{\theta},t} \operatorname{precision}(f_{\boldsymbol{\theta}},t) s.$	t. r
OFBS:	$\max_{\boldsymbol{\theta},t} F_{\beta}(f_{\boldsymbol{\theta}},t)$	
OAP:	$\max_{\boldsymbol{\theta}} \operatorname{AP}(f_{\boldsymbol{\theta}}).$	

Relaxation to indicator functions is problematic

prospective observational study. Radiology: Artificial Intelligence, 4(4),.

MedIA.

Chest Radiographs from 42 US and European hospitals. Accepted to JAMIA.

Group of Learning, Optimization, Vision, healthcar**E**, and **X**

Imbalance Learning

Example: reformulation for FPOR

 $\operatorname{cision}(f_{\boldsymbol{\theta}}, t) \ge \alpha,$ $\operatorname{recall}(f_{\theta}, t) \ge \alpha,$

$$\begin{split} \max_{\boldsymbol{\theta}, \boldsymbol{s}, t} & \frac{1}{n_{+}} \sum_{i \in \mathcal{P}} s_{i} \\ \text{s.t.} & \sum_{i \in \mathcal{P}} -(1 - \alpha) s_{i} + \sum_{i \in \mathcal{N}} \alpha s_{i} \leq 0, \\ & \max(s_{i} + f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}) - t - 1, 0) - \\ & \max(-s_{i}, f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}) - t) \geq 0 \quad \forall i \in \mathcal{N}, \\ & \max(s_{i} + f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}) - t - 1, 0) - \\ & \max(-s_{i}, f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}) - t - 1, 0) - \\ & \max(-s_{i}, f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}) - t) \leq 0 \quad \forall i \in \mathcal{P} \end{split}$$

References

- [1] Sun, J., Peng, L., et al., (2022) Performance of a chest radiograph ai diagnostic tool for COVID-19: a
- [2] Peng, L., et al.. (2021). Rethink Transfer Learning in Medical Image Classification. submitted to
- [3] Peng, L., et al. (2022). Evaluation of Federated Learning Variations for COVID-19 diagnosis using
- [4] Peng, L., et al., (2022) Imbalanced Data Classification using Regrouping. In preparation for JMLR.
- [5] Peng, L., et al., (2022) An empirical study on imbalanced classification. In preparation for JMLR.