Optimization For Robustness Evaluation Beyond [, Metrics
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Robustness Evaluation Problems

Current (adversarial) robustness evaluation of neural networks are
generally formulated as solving the following two forms of constrained

optimization problems:

. Finding an adversarial « Finding the robustness radius

: : _ via min form:
perturbation via max form:
max £ (y, fo(x')) min d (z, z')
s.t. d(z,z2')<e, x' €]0,1]" s. L. l’iﬁi{fe(m ) > fo(z'), 2" €[0,1]"

PyGRANSO with Constraint-Folding (PWCF)

1. General purposed non-linear optimization solver
2. Can handle non-smooth functions
3. With GPU-acceleration --- Deep Learning OK

- Can solve both formulations with general distance metrics with high
qguality. E.g., min form with L8 and L1.5 distances below:
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Solution patterns depending on solvers used
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* E.g., solving Max- . APGD e PWCE
Form with L1

What this may imply:
1. Current robustness evaluation may be insufficient and misleading

2. Abs robustness may be hard to achieve

[1] Liang H, Liang B, Peng L, Cui Y, Mitchell T, Sun J. Optimization and optimizers
for adversarial robustness. arXiv preprint arXiv:2303.13401. 2023 Mar 23.
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Uncertainty-aware Boldness

Uncertain Boundary Class“0”
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A classifier should achieve good: 1) generalizability 2) robustness 3)
uncertainty-aware Boldness.

Introduce a new evaluation metric towards reliability: boldness accuracy (BA)

Existing models, including robust models, are not uncertainty-aware bold
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Formulate robustness and uncertainty-aware boldness as min-max
optimization problem, improve the overall performance
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Selective Classification (SC)

- Selectively making predictions to avoid excessive errors.
- Beneficial to deploy the imperfect Al models to practical applications

with high-stakes requirements

E.g., an Al-powered medical diagnosis assistant can make confident and
correct predictions on its own, saving a significant amount of doctors'
labor, while turning unconfident cases to doctor.

Calibrated confidence # selection confidence

« A simple example and SC performance of 4 score functions
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(a) Visualization of samples (b) Risk-coverage curves

* Their empirical calibration assessment
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“Margin” is better than maximum softmax scores
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[N] Liang H, Peng L, Sun J. Toward Effective Post-Training Selective Classification
for High-Stakes Applications. In preparation for Neurips 2023.



