Sla_]'n_ International Conference on QUEENS M
DataMining = 2= cotiece UNIVERSITY
OF MINNESOTA \

2923

Deep Learning with Nontrivial Constraints

Buyun Liang, Ryan de Vera, and Ju Sun
Computer Science & Engineering, University of Minnesota
Tim Mitchell
Queens College, City University of New York

Apr 29, 2023

UNIVERSITY OF MINNESOTA
Driven to Discover:

Presenters

Buyun Liang Ryan de Vera
(CS&E, UMN) (CS&E, UMN)

Prof. Tim Mitchell Prof. Ju Sun
(CS, Queens C.) (CS&E, UMN)

Contributors

Hengyue Liang
(ECE, UMN)

Yash Travadi Le Peng
(CS&E, UMN) (CS&E, UMN)

Wenjie Zhang
(CS&E, UMN)

el
2
N
W

R

Prof. Ying
(ISyE, UMN)

Prof. Qizhi He
(CSGE, UMN)

Deep learning (DL)

Artificial neural networks

4

e
«
0;0

Typical supervised learning pipeline

4‘:’5 V.IOI,? Step | General vie\n./ . NN view _
72 ‘ ‘{‘}& . I} Gather training set | Gather training set (z1,y,),
M“\{” @19, @) | @)
'A ‘ WP 2 Choose a family of func- | Choose a NN with k& neurons, so
input layer tions, e.g., H, so that | that there is a group of weights
hidden-layer hidderlayer2 there isan f € H toen- | (wy,..., Wiy Disgysanes, br.) ensuring vy, ~
sure y, =~ f (x;), Vi {NN (w1,..., Wi Dl sy br)} (xi), Vi
3 Set up a loss function ¢ | Set up a loss function ¢
" 4 Find an f € H to mini- | Find weights (w1, ..., wy, b1, ..., bi) to

used to approximate nonlinear functions

mize the average loss

2> e @)

minimize the average loss

1 n
— E L[y, {NN (w1,..., e Do b))} (xi)]
n

=1

Three
fundamental questions
in DL

— Approximation: is it powerful, i.e., the H large enough for all

possible weights? | Universal approximation theorems

— Optimization: how to solve

min —Z? yz,{NN w1,---,wk>bla--->bk)} (iBz)]

ws,bis N

- Generallzatlon. does the learned NN work well on “similar’ data?

Isn't solved?

Base class

CLASS torch.optim.Optimizer (params, defaults) [SO

Base class for all optimizers.

® WARNING

Parameters need to be specified as collections
consistent between runs. Examples of objects {
and iterators over values of dictionaries.

Parameters:

e params (iterable) - an iterable of t¢
Tensors should be optimized.
e defaults - (dict): a dict containing d

when a parameter group doesn’t sp¢

Adamax

ASGD

LBFGS

NAdam

RAdam

Algorithms

Adadelta

Adagrad

Implements Adadelta algorithm.

Implements Adagrad algorithm.

Implements Adamax algorithm (a variant of
Adam based on infinity norm).

Implements Averaged Stochastic Gradient
Descent.

Implements L-BFGS algorithm, heavily inspired
by minFunc.

Implements NAdam algorithm.

Implements RAdam algorithm.

Igorithm

When DL meets constraints

Artificial neural networks
Unconstrained optimization

XX
>, \'} 1'/{
PRI

. L
min —Zg[yi,{NN(wly---ywkabla"'7bk)}(mi)]
=1

w's,bis N “

7N .
//A‘\\ & B min f(ar:) “Solved”
input layer €r V
. hidden layer 1 hidden layer 2 —
{ Constrained optimization
-4 R min f(x) s.t. g(x) <0
£
¢) largely “unsolved”

used to approximate nonlinear functions

Constrained optimization

This tutorial:
main f(x) s.t.g(x)<O0

largely “unsolved”

how to solve DL problems with constraints

' Left: “DL problems with
constraints” in DALL-E's
mind

OUJ[LI Nne Constrained deep learning: CDL

What and how for CDL
Why CDL

No good solvers for CDL yet
Granso and PyGranso
PyGranso in action

Outlook

DL with simple constraints

Embedding constraints into DL models

1
10

o >, T
e“’l e P
z H [—7“ L L L —7"]
- Y A |
e D; €
Softmax

RelLU Sigmoid
(Rectified Linear Unit)

Nonnegativity [0, 1] Nonnegativity and summed to 1

DL with nontrivial constraints

e Robusthess evaluation
e |mbalanced learning
e Physics-informed neural networks (PINNSs)

Robustness evaluation (RE)

Maximize loss function

max £ (3, fo(@)
s.t.|d(z,z') <e|, |2 €][0,1]"

~

“panda” “gibbon"

/ Allowable perturbation Valid image
T) x

decision boundarycﬂj_ Minimize robustness radius
minimal perturbation ball

min d(xz,z’)

wl
s.t.[max fo(@') > f3(@).[«’ € 01"
17y
actual perturbation ball Change the predicted class Valid image

Ref Optimization and Optimizers for Adversarial Robustness. Liang, H., Liang, B., Peng, L., Cui, Y., Mitchell, T., & Sun, J. https./arxiv.org/abs/2303.13401

https://arxiv.org/abs/2303.13401

Projected gradient descent (PGD) for RE

o f(x) Step size max £ (y, fo(2'))

Xpad = Fo (Xk: — aka(xk)) s.t. d(z,2')<e, a2 €l0,1]"

Algorithm 1 APGD

_d
Po(xg) = arg s |x — %o||2 Projection operator L Kuguts J, 8,0, e, W' {0yt
XE

2: Output: Tmax, fmax

2 &0 4= Ps (a9 49V (=)

¢ faax < max{f(z®), f(z()}

* Tmax € Z(O) if fmax = f(m(o)) else Tmax z(l)
: for k = 1 to Nie,—1 do

254D ¢ Ps (2 + v f(z®))

) pg (z(k) + a(z(FHD) — k)

9 oUW

Key hyperparameters:
(1) step size

. . k k-1
(2) iteration number 1= a)e® — o))
9: if f(z*+D) > fra then
10: Tmax < FTD and oo, « faz®+D)
11: endif
12: ifk € W then
13: if Condition 1 or Condition 2 then
14: n < n/2 and z*F+HD) 2.
15: end if
16: end if
17: end for

Ref https://angms.science/doc/CVX/CVX_PGD.pdf
https:/www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/55 .pdf
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. Croce, F, Hein, M., ICML 2020

https:/arxiv.org/pdf/2003.01690.pdf

https://angms.science/doc/CVX/CVX_PGD.pdf
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S5.pdf
https://arxiv.org/pdf/2003.01690.pdf

Problem with projected gradient descent

CIFAR-10 - € = 0.031

MNIST - € = 6.3

'CIFAR-10 - ¢ = 8/255

MNIST - € = 0.3

- -step=¢/100
& - -step=¢/25
! - -step=¢/10

' - -step=¢/4

0 step=c/2
step=e/1
step=2¢

loss

400 600 800 1000

800
iterations

0.00
1000 200 400 600 800 1000 ©
iterations

400 600

800 . §
iterations

400 600
iterations

200

robust accuracy

400 600
iterations

800

400 600
iterations

400 600 200
iterations

400 600 800 200
iterations

200

max £ (y, fo(z'))

s.t. d(z, ') <e, ' €]0,1]"

Tricky to set:
iteration number & step size
i.e., tricky to decide where to

stop

Ref Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. Croce, F., Hein, M., ICML 2020

https:/arxiv.org/pdf/2003.01690.pdf

https://arxiv.org/pdf/2003.01690.pdf

Robustness evaluation: penalty methods for
complicated d (perceptual attack)

Algorithm 2 Lagrangian Perceptual Attack (LPA)

max £ (y, fg (:l:’)) 1: procedure LPA(classifier network f(-), LPIPS distance d(-, -), input x, label y, bound €)
x’ 2 A+ 0.01
’ / n 3 X+ x+0.01xN(0,1) > initialize perturbations with random Gaussian noise
s.t. d (m’ x) <e, TE [O’ 1] 4 foriinl,...,Sdo > we use S = 5 iterations to search for the best value of \
5: fortinl,...,T do > T' is the number of steps
dlz. ') = d(x) — ¢ x 6: A + Vz [L(f(%X),y) — Amax (0,d(x,x) —¢€)] > take the gradient of (5)
(’]) o ” () A()”2 pe_rceptual' T A=A/|Al2 > normalize the gradient
where d)(m) = [g1 (m), e gL (w)] dIStance 8 7N =€x* (O.l)t/T > the step size 7 decays exponentially
9: m <+ d(X,Xx+ hA)/h >m = derivative of d(X, -) in the direction of A; h = 0.1
Projection onto the constraint is com plicated 10: df; +— X+ (n/m)A > take a step of size 7 in LPIPS distance
Il end for
12: if d(X,x) > € then
13: A 10X > increase A if the attack goes outside the bound
Penalty methods 14: end if
15: end for
~ ’ ~ 16: X + PROJECT(d, X, X, €)
max L(f(®),y) — Amax (0, [6%) — 62 =€) 1T i

18: end procedure

Solve it for each fixed A and then increase A

Ref Perceptual adversarial robustness: Defense against unseen threat models. Laidlaw, C,, Singla, S., & Feizi, S. https:/arxiv.org/abs/2006.12655

https://arxiv.org/abs/2006.12655

Problem with penalty methods

cross-entropy loss margin loss

max £ (y, fo(@'))
gt d(z;2') <&, 2#elod]®

Method Viol. (%) | Att. Succ. (%) + Viol. (%) | Att. Succ. (%) 1

Fast-LPA 73.8 3.54 41.6 56.8

LPA 0.00 80.5 0.00 97.0 2 >

PPGD 5.44 25.5 0.00 38.5 d(z,z') = ||p(x) — p(')]|,

h = [Gil®)senn G
PWCF (ours) 0.62 93.6 0.00 100 where glz)= [9ile) 9r(@)]
LPA, Fast-LPA: penalty methods PPGD: Projected gradient descent PWCEF, an optimizer with
a principled stopping

Penalty methods tend to encounter criterion on stationarity
large constraint violation (i.e., infeasible solution, known in optimization & feasibility

theory) or suboptimal solution

Ref Optimization and Optimizers for Adversarial Robustness. Liang, H., Liang, B., Peng, L., Cui, Y., Mitchell, T., & Sun, J. arXiv preprint arXiv.2303.13401.

Robustness evaluation: quick summary

Two forms of RE

max /£ (y, fo(x')) min d (z,x’)
x’ '
gt d(@a) <&, ael0A]™ Sk n_;axfé(:c’) > fa(®) 5 = € [0,1]"
1FY
Two methods for handling constraints
projected gradient descent penalty methods
min f(x) min f(x) s.t. g(x) <0
xeQ x
Xk+1 = PQ (Xk — Oszf(Xk)) ma‘:}n f(:l?) +)\max(O, g(w))
Solved withincreasing) - sequence
Issue: no principled stopping criterion/step Issue: infeasible solution

size rules

DL with nontrivial constraints

e Robustness evaluation
e Imbalanced learning
e Physics-informed neural networks (PINNSs)

=
a

#si

Imbalanced learning: background

100000

80000

CheXpert Chest X-ray Classification

" Predicted POS | Predicted NEG

) e
2000 POS 70 30
»o”"” O o o NEG 1000 9000
Diabetic Retinopathy Classification | | HAM10000: Pigmented Skin Lesion Classification
o o Accuracy: 9070/10100 = 0.898
- = True Positive Rate (Sensitivity, Recall): 0.7
o e True Negative Rate (Specificity): 0.9
g el s e Balanced Accuracy: (0.7 +0.9)/2 = 0.80
w? W 2 o e « w A 1 @ —
! Precision (POS): 70/1070 = 0.065

Class imbalance in healthcare datasets

F1 Score: 270.0650.7/(0.065 + 0.7) = 0.119

Reliable evaluation in imbalanced learning: precision needed!

Imbalanced learning: direct metric optimization

Typical learning objective: ?él?l} E(,y)~Da , 1 {y # f(=)} accuracy maximization

Yoiry Ty = +13 1 {fo(:) > t}
Sty 1y = +1}
precision(fg,t) - recall(fg,t)
B2precision(fg,t) + recall(fg,t)

Sy 1y = +1} 1 {fa(x;) > t}
Zﬁv:1 1 {f@(m%) = t}

precision(fg,t) = recall(fe,t) =

Fp(fo,t) = (1 +7)

_ 1 N AN 1{ys = +1} 1 {fo(xs) > fo(=:))
APl = {i : y; = +1}| ; Ligie=+1) YN 1 {fo(x,) > fo(x:)} '

fix precision, optimize recall (FPOR): max recall(fg,t) s.t. precision(fg,t) > a,
fix recall, optimize precision (FROP): max precision, s.t.recall(fq,t) > a,
optimize Fj; score (OFBS): max Fs(fo,t),

optimize AP (OAP): max AP(fo).

Imbalanced learning: Lagrangian methods

mcgn f(x) s.t. g(x) <0
minmax fiz) +Ag(ew)

Idea: alternating minimize ¢ and
maximize)\ via gradient descent

Reminder on gradient descent
min f(x)

iteration step :
X1 = T — tV ()

max recall(fg,t) s.t. precision(fg,t) > «,

0.t

1
— ¢
il p(f)

st tp(f) = altp(f) + fo(f)).
FED) = 5O _ A7 L(F®O, A®)
A+ —A2\(@) 4 ’yVL(f(t'H),)\(t))

where

L(f,0) = A+ NLH() + A2~ (f) - AlY*].

Eban, Elad, et al. "Scalable learning of non-decomposable
objectives." Artificial intelligence and statistics. PMLR, 2017.

Imbalanced learning: quick summary

fix precision, optimize recall (FPOR): max recall(fg,t) s.t. precision(fg,t) > a,

fix recall, optimize precision (FROP): max precision, s.t. recall(fg,t) > a,

Lagrangian method

v

min I)I‘lgg(f(fl?) A)\TQ(CB) Issues
- e Infeasible solution

: . e Slow convergence
Idea: alternating minimize ¢ and J

maximize)\ via gradient descent

DL with nontrivial constraints

e Robustness evaluation
e |mbalanced learning
e Physics-informed neural networks (PINNs)

PINNs: DL for PDEs

Physics-informed neural networks (PINNS) U is represented as a DNN
au 6u 82 u 82 U Naviers-Stokes loss
/ <X; dzy’" "’ Ozq’ 921021 8:1:181':1;'“;)‘) =0 xe
B(u,x) =0 on 89, gy
Penalty parameters Continuous modeling instead of

finite-difference for derivatives

LO;T) =|wsLs(0;T5) Hwofu(0;Ty)

1 il ou 8% 824 &
‘Cf(0,7}) == |7}| x;—f f(xa 81‘1"”’ a.’L'd, 8xlamla-",al_lazd1"'ak) .
1 "
Ly(0;Ts) = &l > IBa,)13,
xE€Ts

Ref Liang, Buyun, Tim Mitchell, and Ju Sun. "NCVX: A general-purpose optimization solver for constrained machine and deep learning." arXiv
preprint arXiv.2210.00973 (2022). wiki https:.//enwikipedia.org/wiki/Physics-informed_neural_networks

https://en.wikipedia.org/wiki/Physics-informed_neural_networks

PINNs: methods

. f(:z: du Ou . _0%u u .)=0
Typical methods min £(u(z)) s.t.{ "Oz17 "2 Bzg’ Dx1dw1 "7 Dwrdzg " ’

u() B(u,z) =0, Va €

Penalty methods

Lagrangian methods _ Infeasible solution

Augmented Lagrangian methods

+

First-order solver — Low quality solution

Ve e

OUJ[LI Nne Constrained deep learning: CDL

What and how for CDL
Why CDL

No good solvers for CDL yet
Granso and PyGranso
PyGranso in action

Outlook

There's no free lunch!

Supervised learning as data fitting

Typically, #data points we need grow
exponentially with respect to dimension
(i.e., curse of dimensionality)

Knovxledge

7,

\all data Al

>
Data
Building in prior knowledge is crucial for

reducing the data complexity
e.g., “convolutional” layers

Al for science

Thrust B: How Should Domain Knowledge Be Incorporated into Supervised Machine
Learning?

The central question for this thrust is “which knowledge should be leveraged in SciML, and how
should this knowledge be included?” Any answers will naturally depend on the SciML task and
computational budgets, thus mirroring standard considerations in traditional scientific comput-
ing. BASIC RESEARCH NEEDS FOR
Scientific Machine Learning
Hard Constraints. One research avenue involves incorporation of domain knowledge through

imposition of constraints that cannot be violated. These hard constraints could be enforced during
training, replacing what typically is an unconstrained optimization problem with a constrained
one. In general, such constraints could involve simulations or highly nonlinear functions of the
training parameters. Therefore, there is a need to identify particular cases when constraint qual-
ification conditions can be ensured as these conditions are necessary regularity conditions for
constrained optimization [57-59]. Although incorporating constraints during training generally
makes maximal use of training data, there may be additional opportunities to employ constraints
at the time of prediction (e.g., by projecting predictions onto the region induced by the constraints).

Core Technologies for Artificial Intelligence

Prepared for U.S
Department of Energy

Soft Constraints. A similar avenue for incorporating domain knowledge involves modifying] Adanced Scentfic
the objective function (soft constraints) used in training. It is understood that ML loss function se- Compiag Semenrt
lection should be guided by the task and data. Therefore, opportunities exist for developing loss Esﬁ“E’“ﬁé"Y
functions that incorporate domain knowledge and analyzing the resulting impact on solvability :

Ref https:./www.osti.gov/servlets/purl/1478744 Domain-Aware Scientific Machine Learning

https://www.osti.gov/servlets/purl/1478744

Al for science

Thrust C: How Should the Robustness, Performance, and Quality of Scientific
Machine Learning Be Assessed?

The outcome of an ML process is either a decision (classification) or a prediction. For reliable
and credible use of SciML, we need the ability to rigorously quantify ML performance in these
outcomes. Performance measurement implies an assessment of quality, as well as a cost measure
of computations and/or data preparation and management. Traditional measures of acceptable
quality based on statistical cross-validation-type approaches often are heuristic. Measures of pre-
diction quality such as a priori and a posteriori error estimates for numerical approximations of
PDEs [96] (familiar to the finite element modeling community) will be transformative in allowing
the development of optimal and reliable ML algorithms for different uses. Such error estimates
also will enable SciML processes that allow iterative model improvement. Research establishing
quantitative estimates of prediction quality, including effective confidence bounds, will greatly
enhance the usefulness of SciML to decision makers and users. Finally, research is needed on
algorithms that have proven convergence rates with weak dependence on bad data, especially
in situations with a large amount of data of unproven quality or minimal availability of human
expertise.

BASIC RESEARCH NEEDS FOR
Scientific Machine Learning

Core Technologies for Artificial Intelligence

U.S. DEPARTMENT OF

ENERGY

Ref https./www.ostigov/serviets/purl /1478744 Robust Scientific Machine Learning

https://www.osti.gov/servlets/purl/1478744

OUJ[LI Nne Constrained deep learning: CDL

What and how for CDL

Why CDL

No good solvers for CDL yet
Granso and PyGranso
PyGranso in action

Outlook

ay V'
DL frameworks ﬂ
y 4

JAX: Autograd and XLA

O PyTorch ?

TensorFlow

For unconstrained DL problems

Convex optimization solvers and frameworks

CVX

RESEARCH

Modeling languages

o]
)
F

GUROBI

OPTIMIZATION

SDPT3 - a M.... software package for
semidefinite-quadratic-linear programming

K. C. Toh, R. H. Tiitiincii, and M. J. Todd.

TFOCS: Templates for First-Order Conic Solvers

Solvers

Not for DL, which involves NCVX optimization

Note: Gurobi can handle certain NCVX problems

Manifold optimization

Geomstats

1,9

geoopt

Manopt.jl

McTorch Lib, a manifold optimization library for deep
learning

Only for differentiable manifolds constraints

General constrained optimization

ensmallen
flexible C++ library for efficient numerical optimization

GENO

Interior-point methods Augmented Lagrangian methods

TensorFlow Constrained Optimization (TFCO)
Cooper

Lagrangian-method-based constrained optimization

Specialized ML packages

Spoﬁ’g

MLIib

The Machine Learning Library

b WEKA

The University
\ of Waikato

~

Problem-specific solvers that cannot be easily extended to new formulations

OUJ[LI Nne Constrained deep learning: CDL

What and how for CDL

Why CDL

No good solvers for CDL yet
Granso and PyGranso
PyGranso in action

Outlook

Issues with typical CDL methods

projected gradient descent penalty methods
min f(x) min f(x) s.t. g(x) <0
x€eQ x
Xk+1 = PQ (Xk — aka(xk)) ngn f(il:) & A max(O, g(ib))
Solved with increasing) - sequence
Issue: no principled stopping criterion/step Issue: infeasible solution
size rules

Lagrangian method

. 4 Want
m:gn TE”(})(fl@) +ATg(z) ssues e Feasible &
N e Infeasible solution stationary solution

Sl nvergence
Idea: alternating minimize & and ¢ SOw cohverd e Reasonable speed

maximize)\ via gradient descent

Principled answers to these questions

e Feasible & stationary solution

Stationarity and feasibility check: KKT condition

§ O(0) =fix, tap,)
e Reasonable speed v
| e T
\ \‘ /
Line search ey
9 / 3 i
- : ‘\ /
e Ahidden problem: nonsmoothness \/

Armijo (Sufficient Decrease) Condition

A principled solver for

constrained, nonconvexy,

nonsmooth problems

xcR"

G RA’S O

Nonconvex, nonsmooth, constrained |,,;,, f(x), st. ci(x)<0,Viel; ci(x)=0,ViekE.

Penalty sequential quadratic programming
(P-SQP)

1
min u(fGx) + V() 'd) +e's+ —d Hid
deRn, seRp

s.t. c(xp) + Vc(xk)Td =5

2

S0,

Advantage: 2nd order method (BFGS) — high-precision solution

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its
evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Determining the GRA’SO

search direction

Corresponding dual
1
max uf () + () A = 2 (WY () + Ve@R) TH ' (W9 () + Ve@oh)
St O =xe (8)

Primal solution (recovered from dual
solution): searching direction

dp = —H; ' (WVf (i) + Ve).)

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its
evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Adjusting the GRA’S O

penalty parameter

. . . . Procedure 1 [d;, ithew] = SqQp_steering_strategy(xy, Hy, ()
Linear model of constraint violation e EL ==t

Input:
T Current iterate x; and BFGS Hessian approximation Hy

l(d, xk) = || max{c(xk) 7+ VC(Xk) d, O} || 1 Current value of the penalty parameter u
Constants:

Values ¢, € (0,1) and ¢, € (0,1)
Output:

Search direction dj,

Penalty parameter pew € (0,]

Corresponding reduction

ls(d; xx) := 105 x) — I(d;xx)

T 1: Solve QP (8) using pnew := 1 to obtain search direction dj from (9)
— . 2: if Is(dy; x,) < c,v(x;) then
— v(xk) ” max{c(xk) + Vc(xk) d’ O} “ 1 3: Solve (8) using u = 0 to obtain reference direction Zik from (9)
4: while I5(dy;xy) < c,ls(dy;x;) do
5 Mnew = CyMnew
o 6: Solve QP (8) using 4 := yew to obtain search direction d; from (9)
Advantage: feasibility guarantee 7. end while
8: end if

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its
evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Estimating the stationarity GRA’SO

Gradient from L most recent iterates
! ! G := [Vf kr1-1) - - - Vf ()]

Ji = [Veilxxg1—1) -~ Ve, ie€{l,...;p}

Augmented QP 1o+ e i .
ae]R’ AeRP’ ZCl(xk)e & |:)»:| (G, J1,....Jp,] H ' [G, Ty, .., Jp] [A]

st. O<h,=e, do=pu 020, (12)

A | (o)
Primal solution: termination condition do = Hk (G, J1,. .. ’Jp] [A]

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its
evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Estimating the stationarity GRA’S O

Augmented QP 1o+ e i .
GGRI)\GRPI ch(xk)e)\' [)\.] [G,]l,-..,\]p] Hk [G,Jl,...,Jp] [}L]

st. 0<A;<e, eo=u, 0>0. (12)

Stationarity based on (approximate) gradient sampling

Gy = [Vf(.'L‘k) Vf(lkl) Vf(;vk’m)}

Direction atm
min %HG;«\H%
A€ER™M+1 Gradient sampling direction
gt 1TA=1 A>0
Advantage: can handle nonsmoothness

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its
evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

e e e e e e
LA E LD RS

I I R

: Set Hy :=1 and u := wo

: Set ¢ (-) as the penalty function given in (2) using f(-) and c(-)

: Set V¢ (-) and v(-) as the associated gradient (4) and violation function (3)
: Evaluate ¢y := ¢ (x0; £), Voo := Ve (xo; 1), and vy := v(xp)

: for k=0,1,2,... do

[dy, 1] := sqp_steering_strategy (x;, Hy, it)

if i < p then

Setu =
Reevaluate ¢y := @ (xi; w), Vo := Ve (xi;), and vy := v(xi)
_end if

/| Penalty parameter has been lowered by steering; update current iterate

[Xk+15 Prr1> VPri1, Vir1] := inexact_linesearch(xy, ¢, Vi, di, ¢ (-), Vo (-

Compute d,, via (12) and (13)

G RA’S O

Advantages

e Reliable step-size rule

if ||d,|l> < T, and vi41 < 7, then
/I Stationarity and feasibility sufficiently attained; terminate successfully
break

| end if

e Principled stopping criterion

Set Hy.1 using BFGS update formula
: end for

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its
evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Key take-away G RA’S O

e Principled stopping criterion and line search, to obtain a
solution with certificate (stationarity & feasibility check)

e Quasi-newton style method for fast convergence, i.e,
reasonable speed and high-precision solution

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its
evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Limitations of GRANSO GRAWSO

f_grad imag((conj (Bty)*Cx."')/(y'*x));

f_grad = f_grad(:);

ci;gfé& = Feai((ﬁoﬁi(étys;éx.'5)(9;¥x)):

ci_grad = ci_grad(:);

analytical gradients required Lack of Auto-Differentiation
2 I N R Lack of GPU Support
. = size(C,1); No native support of tensor variables
X = reshape(x,p,m);

= impossible to do deep learning with GRANSO
vector variables only

GRANSO meets PyTorch

CRANJSO + O PyTorch

e a O -‘a

{OPyGRANSO

NCVX PyGRANSO
Documentation

O N C HEI;IRI% f(x), st.ei(x) <0,Vi€Z; ¢(x)=0,Vi€ &
Search the docs ... \ VX

Introduction

— First general-purpose solver for constrained DL

Settings

v roblems
Examples v NCVX PaCkage p

Home

NCVX: A General-Purpose Optimization Solver for
Constrained Machine and Deep Learning

Buyun Liang, Tim Mitchell, Ju Sun

NCVX PyGRANSO: Advantages N\ NCVX

1) Auto-Differentiation

https://ncvx.orqg/

Orthogonal Dictionary Learning (ODL)

qemn

. |
min f(q) = — 1Y |,, st |lq|,=1

function([f,fg,ci,cig,ce,cegl=comb_£fn(q)

f = 1/m*norm(q’*Y, 1); % obj

[fg = 1/m*Y*sign(Y’*q); % obj grad |

ci = []; cig = [1; % no ineq constr

q’*q - 1; % eq constr

[ceg = 2%q; % eq constr grad |
end
soln = granso(n,comb_fn);

Analytical gradients

def comb_fn(X_struct):
q = X_struct.q
f = 1/m*norm(q.TQY, p=1) # obj
ce = pygransoStruct ()
ce.cl = q.T@q - 1 # eq constr
return [f,None,ce]
var_in = {"q": [n,1]} # define variable
soln = pygranso(var_in,comb_fn)

No Analytical gradients

Demo 1: GRANSO for ODL

Demo 2: PyGRANSO for ODL

Ref Buyun Liang, Tim Mitchell, Ju Sun. NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning. In Neural
Information Processing Systems (NeurlPS) Workshop on Optimization for Machine Learning (OPT 2022).

https://ncvx.org/

NCVX PYyGRANSO: Advantages N CVX

2) GPU acceleration for large scale problems httos://ncvx.ora/

Orthogonality-constrained RNN

GPU: ~7.2 s for 100 iter CPU: ~17.6 s for 100 iter

B0Eo NSO with auto-differentiation
th aut
)

n 1 = .
sed under the AGPLV3, Copyright (C) 2021-2022 Tim Mitchell and Buyun Lianc L Tim Mitch

48010
of inequali :
of equality co aints <

Limited-memory mode enabled with s e
NOTE: limited-memory mode is generally NOTE: limited-memory mode is genera
ded for nonsmooth probl recommended for nonsmooth problem

Stationarit
Grads |

32459429436
0 010433

000000
060000
000000
000000
000000
000000
000000
000000
0600000

000000
000000
50000

2
4
2
1
4
1
i

F = final i

Optimization erance), MF = Most Feasible

100
tion evaluations: 182
PYGRANSO 4

Ref Buyun Liang, Tim Mitchell, Ju Sun. NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning. In Neural
Information Processing Systems (NeurlPS) Workshop on Optimization for Machine Learning (OPT 2022).

https://ncvx.org/

NCVX PyGRANSO: Advantages N\ NCVX

3) General Tensor Variables
var_in = {"x1": [1], "x2": [1]}
Scalar input

var_in = {"q": [n,11}
Vector input

var_in = {"M": [d1,d2],"S": [d1,d2]}

Matrix inputs

var_in = {"x_tilde": list(inputs.shape)}

Higher order tensor input

https://ncvx.orqg/

objective function
f = (8 % abs(x1x%2 = x2) + (1 - x1)%%*2)

objective function
qtY = q.T @Y
f = 1/m * torch.norm(qtY, p = 1)

objective function
f = torch.norm(M, p = 'nuc') + eta * torch.norm(S, p = 1)

adv_inputs = X_struct.x_tilde

epsilon = eps

logits_outputs = model(adv_inputs)

f = ~torch.nn.functional.cross_entropy(logits_outputs, labels)

Ref Buyun Liang, Tim Mitchell, Ju Sun. NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning. In Neural
Information Processing Systems (NeurlPS) Workshop on Optimization for Machine Learning (OPT 2022).

https://ncvx.org/

User-friendly is our philosophy

Answering DOE's call

Thrust C: How Should Domain Knowledge Be Modeled and Represented in Scientific
Machine Learning?

An additional opportunity for domain-aware SciML research is in constructing modeling lan-
guages and frameworks that facilitate the inclusion of domain knowledge into the training pro-
cess. Often, modeling languages and frameworks (e.g., [65, 66]) are designed to lower the barrier
of entry for users by facilitating rapid and robust problem formulation. Extending the ways that
SciML can express and incorporate domain knowledge could have far-reaching implications in
much the same way that these tools now are regularly used for implicit features, such as algorith-
mic differentiation.

BASIC RESEARCH NEEDS FOR
Scientific Machine Learning

Core Technologies for Artificial Intelligence

U.S. DEPARTMENT OF

Ref https./www.ostigov/serviets/purl /1478744 Robust Scientific Machine Learning

https://www.osti.gov/servlets/purl/1478744

Constraint folding

—— Obj Value 6 —— Obj Value
Violation Violation

6

0.. .se
\/ Running Time: 4662.2 s
Reduce # constraints 5 / 4
L] Reduce cost of QP in the SQP 0 6 12 180 4 8

(8) n box constraints (b) foded constrain
Equality into non-negative inequality hj (;1;) =0 < |hj (ag)| <0
Inequality into nonnegative inequality ci(x) < 0 <= max{c;(x),0} <0
All non-negative inequalities into one F(ha(2)], - -+, |hi(z)], max{ei (x), 0},

- ,max{c;(x),0}) <0,
F i Ri_“ — Ry (Ry = {a:a>0}) Canbeany function satisfying F(z)=0=2=0

Ref Hengyue Liang, Buyun Liang, Le Peng, Ying Cui, Tim Mitchell, Ju Sun. Optimization and Optimizers for Adversarial Robustness. Under
review at International Journal of Computer Vision (IJCV).

OUJ[LI Nne Constrained deep learning: CDL

What and how for CDL

Why CDL

No good solvers for CDL yet
Granso and PyGranso

PyGranso in action
Outlook

General instruction https:/~/ncvx.orq/

O PYGRANSO

NCVX PyGRANSO
Documentation

Q, Search the docs ...

Introduction

Installation

Settings v
Examples v
Tips

NCVX Methods &
Citing PyGRANSO
Tutorial Sessions v

NCVX PyGRANSO Forum &

Home

& NCVX

NCVX Package

NCVX (NonConVeX) is a user-friendly and scalable python software package targeting general
nonsmooth NCVX problems with nonsmooth constraints. m is being developed by GLOVEX
at the Department of Computer Science & Engineering, University of Minnesota, Twin Cities.

Our software announcement paper is available at https://arxiv.org/abs/2210.00973. This paper
is accepted by the NeurlPS Workshop on Optimization for Machine Learning (OPT 2022). See

our poster for more details.

https://ncvx.org/

SVM: mathematical form

v o gl &=
%151 : |w||* + bv + - ;ma.x(o, 1— ((w,z;) + b))

nonsmoothness
min le'w +C i(
wh(2 >
subject to y;(wl ¢(x;) +b) > 1 — ¢,
G0 = Lo

SVC constrained version

Ref https://scikit-learn.org/stable/modules/sgd.html#online-one-class-svm
https:.//scikit-learn.org/stable/modules/svm.html#svc

https://scikit-learn.org/stable/modules/sgd.html#online-one-class-svm
https://scikit-learn.org/stable/modules/svm.html#svc

NCVX PyGRANSO live coding for SVM

hitps://colab.research.google.com/drive/1YVZNEKSzkd5QUCH1ZS5rXPSizIFV
pCWhl

ONCVX

https://colab.research.google.com/drive/1YVZN6KSzkd5QUCH1ZSrXPSizIFVpCWhl
https://colab.research.google.com/drive/1YVZN6KSzkd5QUCH1ZSrXPSizIFVpCWhl

NCVX PYyGRANSO quick summary: SVM

NVCX for unconstrained SVM

e can handle nonsmoothness
e reliable termination condition (w/0 ad-hoc maxiteration)
e line search criterion (w/o step size scheduler)

NVCX is able to deal with general constrained problem (SVC)

Robustness evaluation: mathematical form

Maximize loss function

max £ (3, fo(@)
s.t.|d(z,z') <e|, |2 €][0,1]"

~

Allowable perturbation Valid image constraints
with radius €

Minimize robustness radius

rr;i’n d(z,x')

s. t.|max fg(z') > fa(z')|,|=’ € [0,1]"

Change the predicted class Valid image constraints

max £ (y, fo(@'))
s.t. d(z,z') <e, ' €][0,1]"

Robustness evaluation min d(z,2')

st max fi(a) > f3(@), @ € 0,1)"
1FY

First general-purpose method for evaluating adversarial robustness

Reliability @ NOBUSTDENCH Generality

A standardized benchmark for adversarial robustness

e SOTA methods
No stopping criterion (only use
maxit); step size scheduler

e SOTA methods
Can mostly only handle standard lp norm (l1,12,linf)

e PWCF (ours)

e PWCF (ours) Distance metric beyond standard lp norm (l1,12,linf).

Line search criterion and E.g.. perceptual distance

termination condition d(z,2') = |é(x) — d(2")],

where ¢(z) = [q1(x),...,g9.(x)]

Ref Optimization and Optimizers for Adversarial Robustness. Liang, H., Liang, B., Peng, L., Cui, Y., Mitchell, T, & Sun, J. arXiv preprint arXiv:2303.13401.

NCVX PyGRANSO live coding for robust evaluation

hitps://colab.research.google.com/drive/1vO4YCnfhFokyYG7D _ufUy_g-QKrFE
ho48

ONCVX

https://colab.research.google.com/drive/1vO4YCnfhFokyYG7D_ufUy_q-QKrFho48
https://colab.research.google.com/drive/1vO4YCnfhFokyYG7D_ufUy_q-QKrFho48

NCVX PYyGRANSO quick summary: robustness

NVCX for robustness evaluation

e reliable termination condition (w/0 ad-hoc maxiteration)
e line search criterion (w/o step size scheduler)

NVCX is able to deal with general constraints (perceptual attack)

w
=
a

#si

Learning with label imbalance

100000
80000

1

& 60000

£

§

20000
20000

0

| CheXpert Chest X-ray Classification

S 1 o 4 3 o > & i o e e
= S ot o et o PP P, o 5 o o
W S & o oo R S o @ ot « S~
@ ‘\\,@ (o8 o ¢ g) ,_,\;vve

Diabetic Retinopathy Classification |

| HAM10000: Pigmented Skin Lesion Classification

60000
50000
40000
30000
20000
10000

6000

Imbalance data in healthcare

Predicted POS @ Predicted NEG

POS 70 30

NEG 1000 9000
Accuracy: 9070/10100 = 0.898
True Positive Rate (Sensitivity, Recall): 0.7
True Negative Rate (Specificity): 0.9
Balanced Accuracy: (0.7 +0.9)/2=0.80
Precision (POS): 70/1070 = 0.065
F1 Score: 270.06570.7/(0.065 + 0.7) = 0.119

Reliable imbalance learning: precision needed!

Learning with label imbalance

Sica Ly = +1} 1 {fo(z:) > £}
Zil 1{y; = +1}
precision(fg,t) - recall(fg,t)
B2precision(fg,t) + recall(fg,t)

Zf;l 1{y; = +1} 1 {fo(x;) > t}
SN 1 {fo(xi) > t}

precision(fg,t) = recall(fg,t) =

Fs(fo,t) = (14 5%

One direction: directly optimizing the evaluation metric

fix precision, optimize recall (FPOR): max recall(fg,t) s.t. precision(fe,t) > a,

b

fix recall, optimize precision (FROP): max precision, s.t.recall(fqg,t) > c,
N

optimize Fj3 score (OFBS): max Fs(fo,t),

NCVX PyGRANSO live coding for imbalance learning

hitps://colab.research.google.com/drive/1__0eV80SbpszaPImaYQawgOQC
XquuAClL

ONCVX

https://colab.research.google.com/drive/1__OeV8OSbpszqPImaYQgwqOQCXquuACl
https://colab.research.google.com/drive/1__OeV8OSbpszqPImaYQgwqOQCXquuACl

NCVX PyGRANSO quick summary: imbalance learning

NVCX for robustness evaluation

e reliable termination condition (w/0 ad-hoc maxiteration)
e line search criterion (w/o step size scheduler)

NVCX is able to deal with general constraints (e.g., precision/recall)

Closing

e Constrained DL (CDL) problems are everywhere

e Current methods for solving CDL are suboptimal
- Projected gradient descent
- Penalty methods
- Lagrangian methods

e NCVX modeling framework + PyGranso solver is to address the gap
- Principled stopping criterion, line search, and quasi-Newton method
to obtain high-quality solution with reasonable speed

e Next steps
- Stochastic optimization
- Autoscaling

